Average Rates of Change

1. Which function below provides the average rate of change for the function $f(t)=3-2 \sqrt{t}$ on the input interval from t to $t+27$?
a. $g(t)=\frac{3-2 \sqrt{t+27}-(3-2 \sqrt{t})}{27}$
b. $g(t)=-\frac{6+2 \sqrt{27+t}}{t}$
c. $g(t)=\frac{6-2 \sqrt{t+27}-2 \sqrt{t}}{27}$
d. $g(t)=\frac{6-2 \sqrt{27+t}}{t}$
e. $g(t)=-\frac{3-2 \sqrt{27+t}}{3-2 \sqrt{27}}$
2. An object is moving forward along a straight line. The distance the object has traveled (in meters) from its starting position t seconds after it started moving is given by $s(t)=2 \sqrt{t}$. What is the average velocity of the object over the interval from $t=4$ to $t=9$.
a. 5
b. 1
c. $\frac{2}{5}$
d. 2
e. $\frac{5}{2}$
3. Missy is running a 200 meter race. She runs the first 120 meters at a constant speed of k meters per second and she runs the last 80 meters at a constant speed of l meters per second. Which of the following expressions represents Missy's average speed over the entire race?
a. $\frac{k+l}{2}$
b. $\frac{200}{\left(\frac{120}{k}+\frac{80}{l}\right)}$
c. $\frac{120 k+80 l}{200}$
d. $\frac{k\left(\frac{120}{200}\right)+l\left(\frac{80}{200}\right)}{2}$
e. None of these
4. The functions f, g, and h are graphed on separate axes below.

Let A_{f}, A_{g}, and A_{h} respectively represent the average rate of change of each function over the particular closed interval displayed in the graph. Which of the following is true?
a. $A_{f}=A_{g}=A_{h}$
b. $A_{h}<A_{g}<A_{f}$
c. $A_{f}<A_{h}<A_{g}$
d. $A_{g}<A_{f}<A_{h}$
e. $A_{f}<A_{g}<A_{h}$
5. When running a marathon you heard the timer call out 12 minutes as you passed the second mile-marker.
(a) As you passed mile-marker 5 you heard the timer call out 33 minutes. What was your average speed from mile 2 to mile 5 ?
(b) If you passed mile marker 5 at 33 minutes, what average speed do you need to run for the remainder of the race to meet your goal of completing the 26.2-mile marathon in 175 minutes? (Round your answer to two decimal places.)
6. Using the graph of f given below, determine a single numerical value for the constant a that makes the following inequality true (multiple values for a exist):
$-1<\frac{f(a+.5)-f(a)}{.5}<0$.

7. A toy car begins moving from rest. Let $s(t)$ represent the distance a toy car has moved away from its initial position (in feet) and let t represent the number of seconds elapsed since the toy car started moving. Values of $s(t)$ for various values of t are provided in the table below.

t	2.6	2.8	3	3.2	3.4	3.6
$s(t)$	36	41	47	52	56	61

(a) Approximate the speed of the toy car 3 seconds after it started moving.
(b) Approximate the acceleration of the toy car 3 seconds after it started moving.

